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Temporal lobe epilepsy (TLE) is the most common drug-resistant
epilepsy in adults. As morphometric studies have shown wide-
spread structural damage in TLE, this condition is often referred to
as a system disorder with disrupted structural networks. Studies
based on univariate statistical comparisons can only indirectly test
such hypothesis. Graph theory provides a new approach to formally
analyze large-scale networks. Using graph-theoretical analysis of
magnetic resonance imaging--based cortical thickness correlations,
we investigated the structural basis of the organization of such
networks in 122 TLE patients and 47 age- and sex-matched healthy
controls. Networks in patients and controls were characterized by
a short path length between anatomical regions and a high degree
of clustering, suggestive of a small-world topology. However,
compared with controls, patients showed increased path length
and clustering, altered distribution of network hubs, and higher
vulnerability to targeted attacks, suggesting a reorganization of
cortical thickness correlation networks. Longitudinal analysis
demonstrated that network alterations intensify over time.
Bootstrap simulations showed high reproducibility of network
parameters across random subsamplings, indicating that altered
network topology in TLE is a consistent finding. Increased network
disruption was associated with unfavorable postoperative seizure
outcome, implying adverse effects of epileptogenesis on large-
scale network organization.
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Introduction

Temporal lobe epilepsy (TLE) is the most common drug-

resistant epilepsy in adults. Although hippocampal atrophy is

the hallmark of this disorder (Cascino et al. 1991), abundant

magnetic resonance imaging (MRI)-based analyses of gray

matter including volumetry, voxel-based morphometry, and

cortical thickness measurement have shown that structural

changes extend to temporolimbic and frontocentral regions

(Bernasconi et al. 2003; Bernhardt et al. 2008; Keller and

Roberts 2008). Several studies have also highlighted marked

morphological (Bernasconi et al. 2004; McMillan et al. 2004;

Seidenberg et al. 2005) and microstructural (Concha et al.

2005; Yogarajah and Duncan 2008) white matter abnormalities

located within and beyond the temporal lobes. Aside from

static changes, there is accumulating evidence that atrophy

intensifies over time, likely as a result of seizure-induced

damage (Theodore and Gaillard 2002; Sutula et al. 2003;

Bernhardt, Worsley, et al. 2009; Cascino 2009; Coan et al.

2009). The extensive character of structural changes may have

negative impact on the results of surgery in term of seizure

outcome (Ryvlin 2003; Keller et al. 2007; Bernhardt et al. 2010)

and form the basis of cognitive impairments in multiple

domains (Jokeit and Ebner 1999; Dow et al. 2004; Dabbs

et al. 2009).

Although the widespread nature of structural damage in TLE

is suggestive of a system disorder resulting in disrupted

structural networks, studies based on univariate statistical

morphometric comparisons can only indirectly test such

hypothesis (Bernasconi et al. 2004; Bonilha et al. 2004;

Bernhardt et al. 2008; McDonald, Hagler, et al. 2008). The

introduction of graph-theoretical methods in brain imaging

offers a formal framework to quantify topological and

organizational properties of complex interconnected networks

(Bullmore and Sporns 2009; Guye et al. 2010). Graph-

theoretical analyses in healthy individuals across various

modalities such as electrophysiology (Stam 2004; Bassett

et al. 2006), functional MRI (fMRI) (Salvador et al. 2005; He,

Wang, et al. 2009), and diffusion tensor imaging (DTI) (Iturria-

Medina et al. 2008; Gong et al. 2009) have indicated that brain

networks are neither random nor regular but characteristic of

a small world. A small-world network is characterized by short

path lengths between individual regions and a high degree of

clustering (Watts and Strogatz 1998), an architecture that

enables both the specialization and integration of distributed

networks at low wiring costs (Sporns et al. 2004).

Brain networks can be defined either on the functional or on

the structural level (Bullmore and Sporns 2009). While

functional networks are derived from the temporal correlation

of neurophysiological signals in different brain regions and

illustrate brain dynamics on a system level (Friston et al. 1993),

structural network construction is based on mapping the actual

wiring or structural relationship between cortical regions. The

gold standard to define such type of connections has been the

use of anterograde and retrograde tract-tracing techniques.

The invasiveness of these approaches limits their application to

animal studies. Advances in neuroimaging techniques, partic-

ularly DTI tractography, have allowed the in vivo study of

structural networks at a macroscopic level (Hagmann et al.

2008; Iturria-Medina et al. 2008; Gong et al. 2009). In regions

with high fiber directionality, such as the deep white matter,

DTI maps putative tracts that closely resemble known

anatomical connections (Johansen-Berg and Behrens 2006),

findings validated by comparative DTI and tracing studies in

nonhuman primates (Parker et al. 2002; Dauguet et al. 2007). In

the vicinity of cortical regions, on the other hand, water

diffusion is generally highly isotropic (i.e., without a principal

direction) since many small corticocortical fibers branch, kiss,

and cross. Thus, despite the success in inferring connectivity of

major deep white matter tracts, DTI-based approaches have
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limited validity to map corticocortical connectivity. Even if

recent techniques allow circumventing some of these limi-

tations by modeling the uncertainty of fiber direction, for

example, they may on the other hand produce higher numbers

of false positive tracts (Behrens et al. 2003; Parker and

Alexander 2005; Gong et al. 2009). Furthermore, with regard

to mapping corticocortical networks across the entire brain,

a DTI-based approach may become problematic as anatomical

distance between 2 cortical seed regions increase. In addition,

physical properties such as curvature, the number of fibers, and

alterations in tracts’ microstructure in case of pathology may

affect the validity of the tracing (Dauguet et al. 2007; Powell

et al. 2007).

Correlation analysis of structural MRI data has been pro-

posed as an alternative framework to study structural networks

(Bullmore et al. 1998; Lerch et al. 2006; He et al. 2007; Bassett

et al. 2008; Bernhardt et al. 2008). This approach rests on the

assumption that positive correlations indicate connectivity, as

axonally connected regions are believed to have common

trophic, developmental, and maturational influences (Cheverud

1984; Wright et al. 1999; Zhang and Sejnowski 2000). MRI-

based cortical thickness measurement has been proposed as

a valid covariate, as it offers an index of cortical morphology

that reflects the size, density, and arrangement of neurons and

neuropil in a biological and topological meaningful way (Parent

and Carpenter 1995). Morphometric correlations of cortical

thickness data have mapped successfully structural networks

that closely resembled tract-tracing data (Mitelman et al. 2005;

Lerch et al. 2006; Bernhardt et al. 2008).

Graph-theoretical analyses of MRI-based thickness correla-

tions have shown a small-world organization of the cerebral

cortex in healthy individuals (He et al. 2007) and have

suggested alteration of such an arrangement in Alzheimer’s

disease, multiple sclerosis, and schizophrenia (Bassett et al.

2008; He et al. 2008; He, Dagher, et al. 2009). The purpose of

this study was to assess the structural basis of large-scale brain

organization in drug-resistant TLE using graph-theoretical

analysis of cortical thickness correlations. Based on the

knowledge of extensive structural damage in this condition,

we hypothesized that the disruption of cortical thickness

correlation networks would progressively increase over time.

In addition, we investigated the impact of network properties

to clinically relevant parameters such as postsurgical outcome.

Lastly, we assessed the reproducibility of network parameters

and between-group differences using a bootstrap approach.

Materials and Methods

Subjects
We studied 122 consecutive patients with drug-resistant TLE. De-

mographic and clinical data were obtained through interviews with the

patients and their relatives. TLE diagnosis and lateralization of the

seizure focus into 63 patients with left TLE (LTLE) and 59 with right

TLE (RTLE) were determined by a comprehensive evaluation including

detailed history, video electroencephalography (EEG) telemetry,

neuroimaging, and neuropsychological assessment in all patients.

Hippocampal atrophy was determined as hippocampal volumes or an

interhemispheric hippocampal asymmetry beyond 2 standard deviation

(SD) of the corresponding mean of healthy controls (Bernasconi et al.

2003). None of the patients had any other lesions visible on MRI or

a history of traumatic brain injury.

For those 94 patients who underwent surgery, we assessed surgical

outcome according to Engel’s modified classification scheme (Engel

et al. 1993). Four patients were lost for follow-up. Due to subpial

aspiration, specimens were unsuitable for histopathology in 22 patients.

In the remaining 72 samples, qualitative pathological examination

(Meencke and Veith 1991) revealed hippocampal sclerosis in 58 (81%)

patients.

Within our TLE population, a subset of 26 patients (9 LTLE, 17 RTLE)

refused to undergo surgery at the first evaluation made by our epilepsy

team. These patients, however, agreed to have repeated MRI scans.

Twelve of them eventually followed our recommendation and were

operated at subsequent hospitalizations. All images were acquired on

the same MR scanner. The interval between the first and last scan was

27 ± 20 months (range = 4--90 months).

The control group consisted of 47 age- and sex-matched healthy

individuals recruited using a set standardized subject inclusion/

exclusion criteria defined by International Consortium for Brain

Mapping (Mazziotta et al. 2009). The Ethics Committee of the Montreal

Neurological Institute and Hospital approved the study and written

informed consent was obtained from all participants. Demographic and

clinical data of all subjects are shown in Table 1.

MRI Acquisition and Construction of Cortical Correlation
Matrices
MR images were acquired on a 1.5-T Gyroscan (Philips Medical Sys-

tems) using a 3D T1-fast field echo sequence (repetition time = 18 ms,

echo time = 10 ms, 1 excitation, flip angle = 30�, matrix size = 256 3

256, field of view = 256 3 256 mm2, slice thickness = 1 mm), providing

an isotropic voxel of volume = 1 mm3. Each image underwent

automated correction for intensity nonuniformity and intensity

standardization (Sled et al. 1998). Images were linearly registered into

a standardized stereotaxic space based on the Talairach atlas (Collins

et al. 1994).

As in our previous work (Bernhardt et al. 2008), we applied the

Constrained Laplacian Anatomic Segmentation using Proximity algo-

rithm (MacDonald et al. 2000; Kim et al. 2005) to generate a model of

the cortical surface and to measure cortical thickness across thousands

of surface-spanning vertices in native space.

Cortical thickness correlation network construction procedures

have been described previously (He et al. 2007). In short, extracted

cortical surfaces were segmented into 52 anatomical regions using the

ANIMAL algorithm (Collins et al. 1995). ANIMAL nonlinearly registers

an individual MRI volume to an anatomically segmented atlas in

a multiscale fashion. Using the inverse of this transform, atlas labels

were warped back to the individual MRI and intersected with the

individual surfaces. We measured the mean cortical thickness across all

vertices in each anatomical region. The listing of the anatomical regions

is given in Supplementary Table 1. Cortical thickness data were

statistically corrected for age, gender, and overall mean cortical

thickness. For each group, an interregional correlation matrix R of

Table 1
Demographic and clinical data

Group Age Females Seizure onset Epilepsy duration Surgery Outcome (Engel Ia) Hippocampal atrophy

Controls (n 5 47) 32 ± 12 (18--66) 24 n.a. n.a. n.a. n.a. n.a.
LTLE (n 5 63) 36 ± 10 (17--57) 36 15 ± 11 (0--47) 21 ± 11 (1--42) 49 26/46 52
RTLE (n 5 59) 36 ± 11 (17--62) 34 16 ± 12 (0--49) 20 ± 13 (1--49) 45 24/44 51

Note: Age, seizure onset, and duration of epilepsy are presented in years ± SD (range); Engel Ia: proportion of completely seizure-free patients after surgery; n.a., not applicable.
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52 3 52 dimensions was generated, where an individual entry rij
contained the Pearson product moment cross-correlation coefficients

of the mean cortical thickness across subjects in regions i and j.

In a separate analysis, cortical surfaces were segmented using

automated anatomical labeling (AAL) as an alternative parcellation

scheme that divides the cortex into approximate Brodmann areas

(Tzourio-Mazoyer et al. 2002).

Network Topology Analysis
The absolute of the correlation coefficient matrix R was thresholded

into a binarized connectivity matrix A, where an entry aij equals 1 if jrijj
exceeded a given threshold and 0 otherwise. Nonzero entries in A

correspond to connections between 2 anatomical regions. Such a binary

52 3 52 matrix is thus equivalent to an undirected graph with 52 nodes

(i.e., regions) and K/2 edges (i.e., connections), where K is the total

number of nonzero entries. Diagonal elements in A were set to 0.

The density of a network with n nodes was defined as the percentage

of the total number of connections K divided by the number of possible

connections, that is,density = K/(52 3 51) 3 100%. Similar to previous

work on the cortical thickness correlation network in Alzheimer’s

disease (He et al. 2008), group comparisons were performed after

thresholding individual correlation matrices of controls, LTLE, and

RTLE at a fixed network density. This procedure ensured that networks

in all groups have the same number of edges or wiring cost (Achard and

Bullmore 2007) and that the between-group differences reflected

alterations in topological organization rather than differences in low-

level correlations (He et al. 2008).

Small-World Analysis

We computed the clustering coefficient C, the characteristic path

length L, and the small-world index r in controls, LTLE, and RTLE over

a wide range of network density thresholds (5--40%). The range of

densities was chosen to allow a proper estimation of small-world

parameters while minimizing the number of spurious edges in each

network (Achard and Bullmore 2007; He et al. 2008).

The clustering coefficient ci of a node i was defined as (Watts and

Strogatz 1998):

ci =
Ei

ki ðki – 1Þ
2

:

Ei is the number of existing connections among the neighbors of node

i. As ki is the actual number of neighbors of node i (i.e., its degree), the

denominator term ki(ki – 1)/2 quantifies the number of all possible

connections among the neighboring nodes. If a node i had only one

edge or no edges, ci was set to 0. The clustering coefficient C of

a network was then defined as the mean clustering coefficient over all

nodes in the network:

C =
1

n
+
n

i=1

ci :

C thus quantifies the cliquishness and is related to the local efficiency

of a network (Latora and Marchiori 2001).

The characteristic path length li of a node iwas defined as (Watts and

Strogatz 1998):

li =
1

n – 1
+
i 6¼j

min
�
lij
�
:

Here, min{lij} is the shortest absolute path length between the node i

and j. The characteristic path length L of a network was then defined as

the mean minimum number of edges that lies between any 2 nodes in

the network. To overcome the problem of dramatically increased L

values in networks with possibly disconnected components, L was

calculated using the harmonic mean definition (Newman 2003; He et al.

2008):

L =
n

+
n

i=1

1
li

:

The reciprocal of L is a measure of parallel information transfer or

global efficiency of a network (Latora and Marchiori 2001).

Compared with random networks, small-world networks have similar

characteristic path lengths, but higher clustering, that is c = C/Crand > 1

while k = L/Lrand � 1 (Watts and Strogatz 1998). The small-world index

r = c/k is thus greater than 1 in small-world networks (Humphries et al.

2006; Humphries and Gurney 2008). Crand and Lrand were defined as the

mean clustering coefficient across 1000 randomly generated networks

that had the same number of nodes, edges, and degree distribution as

the real network (Maslov and Sneppen 2002; Sporns and Zwi 2004).

Network Robustness Analysis

Network robustness, characterized by the degree of tolerance against

random failures and targeted attacks, is usually associated with the

stability of a complex network. Cortical thickness correlation networks

were constructed at a density of 15%. This was the lowest threshold

that guaranteed that all anatomical regions in LTLE, RTLE, and controls

were included in the networks (i.e., any pair of nodes is connected

through a series of edges), thus minimizing the number of false positive

paths (He et al. 2008). Such a fixed constraint optimizes interregional

correlation strength and therefore is biologically plausible (Bassett and

Bullmore 2006).

In the ‘‘random failure analysis,’’ we successively removed randomly

chosen nodes of the network in each group and assessed the relative

size of the remaining largest connected component. The same analysis

was performed on the edges of the network. Each analysis was repeated

1000 times, and the mean relative size of the largest connected

component was computed.

In the ‘‘targeted attack analysis,’’ we removed nodes in decreasing

order of their network betweenness centrality. The betweenness

centrality of a node i was defined as the number of shortest paths

between any 2 nodes in the network that pass through i. It thus

captures the influence of a node on information flow in the network,

especially when network information flow tends to follow the shortest

paths (Freeman 1977; Girvan and Newman 2002). We normalized

betweenness centrality of each node by dividing it by the mean

betweenness centrality across all nodes. We used the MatlabBGL

package (http://www.stanford.edu/~dgleich/programs/matlab_bgl/) to

compute the betweenness centrality of each node. The same analysis

was also performed on the edges of the network. The betweenness

centrality of an edge e was defined as the number of shortest paths

between any 2 nodes in the network that pass through e (Girvan and

Newman 2002).

Mapping of Degree Distribution and Hub Regions

Within each group (controls, LTLE, RTLE), we mapped the connectivity

degree distribution of the network. We defined hub regions as those

with a nodal betweenness centrality that was 1 SD above the mean

nodal betweenness centrality of all cortical regions. Hub regions were

classified into primary, association, and paralimbic areas (Mesulam

1998).

Statistical Analysis
Differences in network parameters C, L, c, k, and r as well as network

robustness measures were assessed separately between each TLE group

(i.e., LTLE, RTLE) and controls using a nonparametric permutation test

with 1000 repetitions (Bullmore et al. 1999). In each randomization

procedure, cortical thickness data of each subject were randomly

reassigned to 1 of the 2 groups. We then obtained connectivity

matrices, network parameters, and network robustness measures in

each randomized group and calculated their differences. This

generated a permutation distribution of differences under the null

hypothesis. The true between-group difference was then placed in its

corresponding permutation distribution. Its percentile position yielded

the significance level of a 2-tailed group difference between each TLE

group and controls. As in previous work (He et al. 2008), significances

were thresholded at P < 0.05.

Relation to Surgical Outcome
We separated our TLE groups into those with a seizure-free (Engel class

Ia) and non--seizure-free (Engel class Ib--IV) surgical outcome.

Analogous to the above analysis, we obtained cortical thickness
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correlation matrices in both subgroups and compared network

parameters using permutation methods.

Longitudinal Analysis
To assess progressive changes in network organization in our TLE

patients with longitudinal data (n = 26), we obtained cortical thickness

correlation matrices at baseline and follow-up scans and calculated the

network parameters. Permutation tests were performed using within-

subject randomization.

Reproducibility Analysis

Cross-Sectional Data sets

We estimated the confidence intervals of network parameters C, L, c, k,
and r in controls, LTLE, and RTLE using a bootstrap approach with

1000 randomizations. In sampling with replacement, after randomly

drawing an individual from the original sample, this individual is put

back before drawing the next one. Each resample had the same size as

the original sample (i.e., n = 63 for LTLE, n = 59 for RTLE, and n = 47 for

controls).

Longitudinal Data set

To assess whether the longitudinal subset was representative of the

overall TLE sample, we placed its network parameters at baseline into

distributions generated by 1000 random draws of 26 patients from the

overall sample. In each randomization, the ratio of LTLE/RTLE was

preserved.

In each randomization of the cross-sectional and longitudinal

datasets, it was ensured that the bootstrapped networks were fully

connected.

Results

Cross-Sectional Analysis

Interregional Cortical Thickness Correlations in Controls,

LTLE, and RTLE

Interregional cortical thickness correlation matrices, connec-

tivity matrices, and connectivity graphs are shown in Figure 1.

Correlation matrices in the 3 groups exhibited similar patterns,

with generally strong correlations between bilaterally homol-

ogous regions and strong correlations between regions within

the same lobe. However, compared with controls, overall mean

strength of positive correlations in LTLE and RTLE was

increased while the mean strength of negative correlations

was decreased (t > 4.5, P < 0.005).

Cortical Thickness Correlation Network Topology in TLE

Network parameters of controls, LTLE, and RTLE are presented

in Table 2.

In all 3 groups, that is, controls, LTLE, and RTLE, we observed

a small-world index r greater than 1 over the entire range of

density thresholds. This was reflected in c = C/Crand > 1 and k =
L/Lrand � 1, indicating a small-world organization in both

patient and control groups (Supplementary Fig. 1). Indeed,

comparing r, c, and k between controls and TLE did not yield

a significant difference.

Comparing patients with controls, we observed increased

clustering coefficients in both TLE groups over almost the entire

range of density thresholds (Fig. 2A). Hence, mean clustering

across all densities (5--40%) was increased in both TLE groups

compared with controls (P < 0.03, Supplementary Fig. 2A).

Comparing patients with controls, we found trends for

increased path length over several density thresholds in both

TLE groups (Fig. 2B). While there was only a trend for an

increase in mean path length across all densities (5--40%) in

LTLE (P = 0.12), this increase was significant in RTLE (P < 0.05,

Supplementary Fig. 2B).

Tendencies for increased clustering and path length were

seen when a more restricted density range (15--25%) was

chosen. This ‘small-world range’ (Bassett et al. 2008) guaran-

teed fully interconnected networks as well as a small-world

index r > 1.2. Moreover, we observed comparable degrees of

network alterations in TLE patients when using the AAL

parcellation algorithm (Tzourio-Mazoyer et al. 2002).

In a separate analysis, we constructed networks in controls

and TLE groups also on the basis of absolute correlation

strength. While the density-based thresholding employed in

our main analysis guaranteed an equal number of connections

across groups and thus allowed us to compare topological

properties of cortical thickness correlation networks un-

affected by differences in low-level correlations, network

threshold based on absolute correlation strength may give

a more straightforward interpretation of a connection as

representing a correlation exceeding a given value (chosen

from jrj = 0.05 – 0.4). In patients, such networks also showed

a tendency for increased clustering relative to networks in

controls (P < 0.057). On the other hand, we could not

reproduce the tendencies for increased path length that were

observed using density-based thresholding (P > 0.4).

Degree distribution and hub regions: In both controls and

patients, we observed that the connectivity degree distribution

included mostly nodes with relatively few connections and

some nodes with many connections. An exponentially trun-

cated power law moderately modeled this degree distribution

(Supplementary Fig. 3); however, we observed a smaller

proportion of nodes with excessive connections than expected

from the fit. Although results are presented for a density of 15%,

similar degree distributions were consistently observed across

density thresholds from 5% to 40%.

In healthy controls, 7 hubs were seen in association and 1 in

primary cortices. In patients, the distribution of hubs was

somewhat different than in controls. In LTLE, 2/10 hubs were

seen in paralimbic and 3 hubs in primary areas. Three of the 5

hubs in the association areas were located in temporal and

supramarginal cortices. In RTLE, 1 hub was seen in paralimbic

and 5 in association areas, with 4 of them in temporal and

angular cortices (Table 3).

Network Robustness Analysis

While networks in TLE patients were globally as robust to

random node failures and random edge failures as those in

healthy controls, they were more vulnerable to targeted node

and edge attacks (Fig. 3).

Targeted node attacks led to significant network break-

downs (P < 0.05) across almost the entire range of removed

nodes in both LTLE and RTLE. Overall, networks were more

vulnerable to targeted attacks in both TLE groups relative to

controls (difference in area under the curve: P < 0.05).

Comparable findings were also observed in the targeted edge

attacks analysis, with an overall increased vulnerability in both

patient groups (difference in area under the curve: P < 0.05).

In the random failure analysis, we did not observe any

differences in overall network robustness (no difference in area

under the curve: P > 0.1) between patients and controls.

Although results are reported for networks at a fixed density

of 15% (i.e., the minimal threshold at which all networks are

fully connected), patterns of findings from the network
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Figure 1. Cortical thickness correlation networks in (A) healthy controls, (B) LTLE, and (C) RTLE. The left column displays the cortical thickness correlation matrices of 52
anatomical areas. The middle column displays the binary connectivity matrices thresholded at a fixed network density of 15%. The right column illustrates the corresponding brain
connectivity graph seen from above. For anatomical abbreviations, please see Supplementary Table 1.
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robustness analysis were relatively consistent across network

density thresholds from 5% to 25%. At higher network density

thresholds, all groups were generally more robust against

failures and attacks.

Relationship between Presurgical Network Impairment and

Postsurgical Outcome

We found a trend for increased clustering (P = 0.1) and path

length (P < 0.06) across all density thresholds in non seizure-

free patients (class Ib--IV) relative to those with seizure-free

outcome (class Ia, Fig. 4). Effects were similar when LTLE and

RTLE were considered separately and when a more restricted

(15--25%) density range was chosen.

Longitudinal Analysis

The comparison of the network at follow-up to baseline scans

revealed increased path length at follow-up over almost the entire

range of density thresholds (Fig. 5), leading to an increased area of

under the curve (P < 0.03). Clustering, on the other hand, did not

differ between baseline and follow-up (P = 0.4).

Reliability and Reproducibility of Network Metrics

Cross-Sectional Cohorts

Bootstrapped network parameters across 1000 random sub-

samples (Supplementary Table 2) were distributed closely to

the same parameters in the original sample of controls and TLE

patients (see Table 2). The boundaries of the bootstrap

intervals confirmed increased clustering and path length in

patients. Indeed, when comparing the mean clustering and

path length (across 5--40% density) between each randomly

chosen TLE and control group, we observed increased

clustering and path length in more than 99% of 1000

resamplings.

Longitudinal Cohort

Network parameters of the longitudinal subsample fell well

within bootstrapped confidence intervals generated by ran-

domly subsampling 26 patients from the total sample (Supple-

mentary Table 3), indicating that the longitudinal group was

representative of the overall TLE population.

Discussion

We performed graph-theoretical analysis on MR-based cortical

thickness correlations and compared the small-world properties

of large-scale structural networks in healthy controls and

patients with drug-resistant TLE. Compared with univariate

mapping of pathology performed in our previous analyses of

cortical thickness (Bernhardt et al. 2008; Bernhardt, Rozen, et al.

2009; Bernhardt, Worsley, et al. 2009; Bernhardt et al. 2010), this

approach more specifically addresses the network organization

underlying whole-brain pathological interactions in TLE.

Table 3
Regions of high betweenness centrality relative to random networks

Region NB Degree Class

Controls
Right medial frontal 3.14 17 Association
Right lateral temporooccipital 2.48 14 Association
Right superior occipital 2.47 8 Association
Right angular 2.39 10 Association
Right lingual 2.32 13 Association
Right cuneus 2.17 9 Association
Left supramarginal 2.14 10 Association
Right precentral 1.81 13 Primary
Left supramarginal 3.03 15 Association

LTLE
Right middle temporal 2.97 14 Association
Right medial frontal 2.79 16 Association
Left occipital pole 2.40 13 Primary
Right insular 2.39 9 Paralimbic
Right superior temporal 2.31 17 Association
Right medial frontoorbital 2.15 10 Paralimbic
Right superior parietal 2.07 14 Association
Left postcentral 1.99 7 Primary
Right occipital pole 1.94 15 Primary

RTLE
Left superior frontal 3.46 14 Association
Left angular 3.42 19 Association
Right insular 2.87 13 Paralimbic
Right angular 2.85 11 Association
Right lateral temporooccipital 2.10 10 Association
Right medial temporooccipital 2.06 8 Association

Note: NB, normalized betweenness centrality; degree, number of connections. Cortical regions

were classified into primary, association, and paralimbic areas (Mesulam 1998).

Figure 2. Network parameter analysis of the cross-sectional cohort. The colored
lines show differences (d) between each TLE group and controls for clustering
coefficient (A, dC) and characteristic path length (B, dL) as a function of network
density. While d 5 0 indicates no difference, d[ 0/d\ 0 indicates an increase/
decrease in the network density of TLE patients relative to controls. The black lines
show the mean and 95% confidence interval of the null distribution of no between-
group difference obtained from 1000 permutation tests at each density value (only
displayed for LTLE). Stars indicate significant between-group differences (P\ 0.05).

Table 2
Network parameters in the cross-sectional sample

Parameter Controls (n 5 47) LTLE (n 5 63) RTLE (n 5 59)

L 1.94 2.02 1.99
k 1.03 1.06 1.04
C 0.31 0.42 0.38
c 1.84 1.81 1.93
r 1.79 1.71 1.86

Note: Results are reported at 15% network density (the minimal threshold where original

networks were fully connected). As there exists only one value for each group, there are no

standard errors reported with these values. L, mean shortest path length; C, clustering

coefficient; k, c, r are small-world parameters. Note that c[1, k � 1, and r[ 1 in small-

world networks.
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Cortical thickness correlation networks in our healthy

controls and patients exhibited a higher clustering but similar

path length compared with corresponding random networks

across a wide range of network densities, suggestive of a small-

world topology. The degree distributions in all 3 groups

indicated that these networks included mostly nodes with few

connections, together with some nodes with many connec-

tions. These findings are in line with data from previous graph-

theoretical analyses of structural networks that were derived

from DTI tractography and cortical thickness correlations that

have suggested a truncated power-law distribution of the

connectivity degree in brain networks of healthy subjects (He

et al. 2007, 2008; Bassett et al. 2008; Iturria-Medina et al. 2008;

Bullmore and Sporns 2009; Gong et al. 2009; Guye et al. 2010).

Group analysis of clustering and path length between healthy

controls and patients, however, revealed increases in the latter.

Moreover, networks of patients were more vulnerable to

targeted attacks. These results suggest an altered topology of

cortical thickness correlation networks in patients with TLE.

Our longitudinal analysis revealed that network alterations

intensify over time. Assessing the relationship between

network organization on preoperative MRI and postsurgical

outcome, we found trends for more severe network alterations

in patients who continued to have seizures after surgery.

Altered Topology of Cortical Thickness Correlation
Networks in TLE: Neurobiological Considerations

We have previously used MRI-based cortical thickness corre-

lations to map specific networks such as entorhinal and

thalamocortical circuitry in healthy individuals and patients

with epilepsy (Lerch et al. 2006; Bernhardt et al. 2008;

Bernhardt, Rozen, et al. 2009). In TLE, we found local

interregional network disruptions between the entorhinal

cortex and the neocortex (Bernhardt et al. 2008). The

comparison of global network organization of patients to

controls performed in the current study revealed increased

path length and clustering in TLE that were consistently

present over a wide range of network thresholds. Thus,

although small-world topological characteristics were pre-

served in patients (as confirmed by c = C/Crand > 1 and k =
L/Lrand � 1 over the entire range of network densities and

the absence of between-group differences in these parame-

ters), our data suggest that structural networks in TLE may

show subtle topological alterations, with a more regularized or

lattice-like configuration (i.e., with high C and L values) than

healthy controls. The patterns of network disruptions in our

patients were similar using 2 different anatomical parcellations

schemes (Collins et al. 1995; Tzourio-Mazoyer et al. 2002).

Further confidence in our findings was provided by the

bootstrap analysis. We observed that across hundreds of

random subsamplings, the confidence intervals of network

parameters remained relatively tight and similar to the

parameters seen in the original groups, suggesting a high

reproducibility across subgroups of patients and controls.

Moreover, increased clustering and path length in TLE relative

to controls were observed in more than 99% of all resamplings,

supporting that altered network topology is a consistent

finding in TLE.

A more regularized network configuration may reduce its

resilience to pathological attacks (Achard and Bullmore 2007).

Figure 3. Network robustness analysis. Graphs display the relative size of the largest connected component (i.e., the largest subnetwork of nodes that are mutually reachable)
as a fraction of removed nodes (left panels) and edges (right panels) by (A) random failures and (B) targeted attacks. Stars indicate differences (P\ 0.05) between groups
obtained from 1000 permutation tests at each density value.
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Indeed, networks in our patients demonstrated reduced

tolerance against targeted edge (i.e., connections) and nodes

(i.e., regions) removal. A reduced tolerance against targeted

attacks may stem from a lack of potential alternative backup

routes, thus indicative of impairments in the parallel organiza-

tion of cortical thickness correlation networks possibly

secondary to disease-related loss of tissue integrity.

We noted differences between TLE groups and controls in

the distribution of hub regions with high betweeness

centrality. While in controls these regions were found primarily

in multimodal cortical association cortices and evenly distrib-

uted across all 4 lobes, a considerable proportion of hubs in our

patients were found in paralimbic and temporal association

cortices. It is tempting to speculate that the predominance of

limbic hub regions in TLE may be related to disturbed

connectivity between temporolimbic and extratemporal neo-

cortical networks possibly secondary to disrupted fiber path-

ways, a hypothesis in line with diffusion tractography studies

(Concha et al. 2005; McDonald, Ahmadi, et al. 2008; Yogarajah

and Duncan 2008; Voets et al. 2009). Increased path length and

clustering and altered topography of hub regions may further

lead to reduced efficiency of global information transfer (Latora

and Marchiori 2001) and signal propagation speed between

temporolimbic and extratemporal neocortical networks

(Achard and Bullmore 2007) and contribute to the decline in

various cognitive domains in TLE (Hermann et al. 2009).

Clinical Implications of Altered Cortical Thickness
Correlation Networks in TLE

From a practical point of view, DTI-based tractography as well

as fMRI-based functional connectivity would allow the con-

struction cortical networks on the individual subject level,

a feature that may prove advantageous in the presurgical

assessment of single patients compared with structural

network generation based on group-wise correlations. On the

other hand, network construction on the basis of T1-weighted

images that have, unlike DTI, played an essential role as

standard clinical imaging in intractable epilepsy for many years

allowed us to study a large consecutive cohort of patients

including those who had longitudinal data.

Our longitudinal analysis demonstrated dynamic alterations

of cortical thickness correlation network organization in TLE.

Although only a fraction of our patients had longitudinal data

available, bootstrap analysis demonstrated that their network

properties fell within the expected range when randomly

subsampling our cross-sectional patient sample, thereby in-

dicating that our sample was sufficiently representative of

the TLE population with pharmacoresistant epilepsy. Despite

the lack of a longitudinal cohort of controls, the progressive

nature of perturbed network organization closely mirror

findings from previous reports on progressive atrophy in

neocortical regions, which has been shown to be more marked

than cross-sectional and longitudinal effects seen in controls

(Bernhardt, Worsley, et al. 2009; Coan et al. 2009).

The general direction of topological alterations in large-scale

networks observed in our patients closely resembles those

found in graph-theoretical analyses of intracerebral EEG

recordings during focal seizures (Ponten et al. 2007; Kramer

et al. 2008; Schindler et al. 2008) and scalp EEG data of

generalized absence seizures (Ponten et al. 2009). Analysis

based on interictal EEG has provided somewhat diverging

results, with a study showing a more regularized networks (i.e.,

with high C and L) (Horstmann et al. 2010), while another

reported progressively more random (i.e., with low C and L)

Figure 4. Relationship between network alterations and seizure outcome after
surgery. The stars indicate the observed difference in area under the curve of the path
length (A) and clustering coefficient (B) between non seizure-free (NSF) and seizure-
free (SF) patients. The circle indicates the mean and the error bars indicate the 95%
confidence interval of the null distribution of no between-group difference obtained
from 1000 permutation tests.

Figure 5. Network parameter analysis of the longitudinal cohort. The colored lines show
the difference (d) in clustering coefficient (A, dC) and characteristic path length (B, dL)
between baseline and follow-up networks as a function of network density. While d 5
0 indicates no difference, d [ 0/d\ 0 indicates an increase/decrease in the network
at follow-up relative to baseline. The black lines show the mean and 95% confidence
interval of the null distribution of no difference obtained from 1000 permutation tests at
each density value. Stars indicate significant between-scan differences (P\ 0.05).
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topologies (van Dellen et al. 2009). Nevertheless, it is tempting

to speculate that network synchronization during the ictal

phase may influence mutual intercortical trophic exchanges,

ultimately leading to progressive and long-lasting remodeling of

interregional structural networks. In vitro simulation studies

have also suggested an association between seizures, neuronal

loss, and alterations in the topology of mesiotemporal networks

at a cellular level (Netoff et al. 2004; Dyhrfjeld-Johnsen et al.

2007).

Our analysis showed tendencies for increased path length

and clustering in patients who continued to have seizures after

surgery compared with those who became seizure free. Seizure

recurrence after surgery is believed at least in part to be related

to a more extended epileptogenic network (Ryvlin 2003;

Bartolomei et al. 2008; Bernhardt et al. 2010) that may

consequently affect adversely structural network organization

as shown by our results.

All interictal fMRI functional connectivity analyses in TLE

except one have studied local alterations in cortical networks

in TLE by statistically comparing the strength of interregional

blood oxygen level--dependent signal correlations between

patients and controls. These studies have shown decreased

connectivity in ipsilateral temporal lobe networks together

with contralateral increases (Bettus et al. 2009) and decreased

connectivity in language networks at rest (Waites et al. 2006),

as well as decreased connectivity between temporal and

default-mode networks during functional tasks (Frings et al.

2009; Voets et al. 2009). A recent graph-theoretical analysis of

resting-state fMRI in TLE showed decreased path length and

clustering in TLE (Liao et al. 2010). The divergence between

our study and the above-mentioned likely stems from the

clinical inclusion criteria. Whereas we included patients with

unilateral TLE, this study was based on 23 young (mean age 24

years) patients with electroclinical and imaging signs of

bilateral TLE who have seemingly a more diffuse and severe

type of epilepsy.

The cross-sectional and longitudinal small-world analyses

performed in this study provide a comprehensive view on

progressive reorganization of large-scale interregional struc-

tural networks, supporting that TLE indeed is a system

disorder. Moreover, the graph theoretic approach lends

a formal framework that would allow future studies not only

to further explore higher order features such as network

modularity and hierarchy (Bassett et al. 2008; Chen et al. 2008)

but also to integrate structural morphometric, DTI-based as

well as electrophysiological and functional data in a unified

framework.

Supplementary Material

Supplementary material can be found at: http://www.cercor.

oxfordjournals.org/.
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